Nonlinear Algebraic Analysis of Delta Shock Wave Solutions to Burgers’ Equation
نویسنده
چکیده
By means of three fundamental structures we can define, in a general way, a sheaf A of differential algebras containing most of the special cases met in the theory of generalized functions. A convenient choice of these structures permits us to study Burgers’ equation with δ-Dirac measure as initial data, and we can construct a generalized δ-shock wave as an approximate solution, self-similar to the initial data.
منابع مشابه
Periodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملNumerical solution of non-planar Burgers equation by Haar wavelet method
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve the non-planar Burgers equation. The quasilinearization technique is used to conveniently handle the nonlinear terms in the non-planar Burgers equation. The basic idea of Haar wavelet collocation method is to convert the partial differential equation into a system of algebraic equations that involves a ...
متن کاملThe modified simplest equation method and its application
In this paper, the modified simplest equation method is successfully implemented to find travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation. This method is direct, effective and easy to calculate, and it is a powerful mathematical tool for obtaining exact travelling wave solutions of the generalized forms $B(n,1)$ and $B(-n,1)$ of Burgers equation and ...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملQuartic B-spline Differential Quadrature Method
A new differential quadrature method based on quartic B-spline functions is introduced. The weighting coefficients are determined via a semi-explicit algorithm containing an algebraic equation system with four-band coefficient matrix. In order to validate the proposed method, the Burgers’ Equation is selected as test problem. The shock wave and the sinusoidal disturbance solutions of the Burger...
متن کامل